home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 16
/
CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gdevmem.c
< prev
next >
Wrap
C/C++ Source or Header
|
1997-03-26
|
12KB
|
378 lines
/* Copyright (C) 1989, 1995 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevmem.c */
/* Generic "memory" (stored bitmap) device */
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gxdevice.h"
#include "gxdevmem.h" /* semi-public definitions */
#include "gdevmem.h" /* private definitions */
/* Structure descriptor */
public_st_device_memory();
/* GC procedures */
#define mptr ((gx_device_memory *)vptr)
private ENUM_PTRS_BEGIN(device_memory_enum_ptrs) {
return (*st_device_forward.enum_ptrs)(vptr, sizeof(gx_device_forward), index-2, pep);
}
case 0: ENUM_RETURN((mptr->foreign_bits ? NULL : (void *)mptr->base));
ENUM_STRING_PTR(1, gx_device_memory, palette);
ENUM_PTRS_END
private RELOC_PTRS_BEGIN(device_memory_reloc_ptrs) {
if ( !mptr->foreign_bits )
{ byte *base_old = mptr->base;
long reloc;
int y;
RELOC_PTR(gx_device_memory, base);
reloc = base_old - mptr->base;
for ( y = 0; y < mptr->height; y++ )
mptr->line_ptrs[y] -= reloc;
/* Relocate line_ptrs, which also points into the data area. */
mptr->line_ptrs = (byte **)((byte *)mptr->line_ptrs - reloc);
}
RELOC_CONST_STRING_PTR(gx_device_memory, palette);
(*st_device_forward.reloc_ptrs)(vptr, sizeof(gx_device_forward), gcst);
} RELOC_PTRS_END
#undef mptr
/* Define the palettes for monobit devices. */
private const byte b_w_palette_string[6] = { 0xff,0xff,0xff, 0,0,0 };
const gs_const_string mem_mono_b_w_palette = { b_w_palette_string, 6 };
private const byte w_b_palette_string[6] = { 0,0,0, 0xff,0xff,0xff };
const gs_const_string mem_mono_w_b_palette = { w_b_palette_string, 6 };
/* ------ Generic code ------ */
/* Return the appropriate memory device for a given */
/* number of bits per pixel (0 if none suitable). */
const gx_device_memory *
gdev_mem_device_for_bits(int bits_per_pixel)
{ switch ( bits_per_pixel )
{
case 1: return &mem_mono_device;
case 2: return &mem_mapped2_device;
case 4: return &mem_mapped4_device;
case 8: return &mem_mapped8_device;
case 16: return &mem_true16_device;
case 24: return &mem_true24_device;
case 32: return &mem_true32_device;
default: return 0;
}
}
/* Do the same for a word-oriented device. */
const gx_device_memory *
gdev_mem_word_device_for_bits(int bits_per_pixel)
{ switch ( bits_per_pixel )
{
case 1: return &mem_mono_word_device;
case 2: return &mem_mapped2_word_device;
case 4: return &mem_mapped4_word_device;
case 8: return &mem_mapped8_word_device;
case 24: return &mem_true24_word_device;
case 32: return &mem_true32_word_device;
default: return 0;
}
}
/* Make a memory device. */
/* Note that the default for monobit devices is white = 0, black = 1. */
void
gs_make_mem_device(gx_device_memory *dev, const gx_device_memory *mdproto,
gs_memory_t *mem, int page_device, gx_device *target)
{ *dev = *mdproto;
dev->memory = mem;
dev->stype = &st_device_memory;
switch ( page_device )
{
case -1:
dev->std_procs.get_page_device = gx_default_get_page_device;
break;
case 1:
dev->std_procs.get_page_device = gx_page_device_get_page_device;
break;
}
dev->target = target;
if ( target != 0 )
{ /* Forward the color mapping operations to the target. */
gx_device_forward_color_procs((gx_device_forward *)dev);
}
if ( dev->color_info.depth == 1 )
gdev_mem_mono_set_inverted(dev,
(target == 0 ||
(*dev_proc(target, map_rgb_color))
(target, (gx_color_value)0, (gx_color_value)0,
(gx_color_value)0) != 0));
}
/* Make a monobit memory device. This is never a page device. */
/* Note that white=0, black=1. */
void
gs_make_mem_mono_device(gx_device_memory *dev, gs_memory_t *mem,
gx_device *target)
{ *dev = mem_mono_device;
dev->memory = mem;
dev->std_procs.get_page_device = gx_default_get_page_device;
mdev->target = target;
gdev_mem_mono_set_inverted(dev, true);
}
/* Define whether a monobit memory device is inverted (black=1). */
void
gdev_mem_mono_set_inverted(gx_device_memory *dev, bool black_is_1)
{ if ( black_is_1 )
dev->palette = mem_mono_b_w_palette;
else
dev->palette = mem_mono_w_b_palette;
}
/* Compute the size of the bitmap storage, */
/* including the space for the scan line pointer table. */
/* Note that scan lines are padded to a multiple of align_bitmap_mod bytes, */
/* and additional padding may be needed if the pointer table */
/* must be aligned to an even larger modulus. */
private ulong
mem_bitmap_bits_size(const gx_device_memory *dev, int width, int height)
{ return round_up((ulong)height *
bitmap_raster(width * dev->color_info.depth),
max(align_bitmap_mod, arch_align_ptr_mod));
}
ulong
gdev_mem_data_size(const gx_device_memory *dev, int width, int height)
{ return mem_bitmap_bits_size(dev, width, height) +
(ulong)height * sizeof(byte *);
}
/*
* Do the inverse computation: given a width (in pixels) and a buffer size,
* compute the maximum height.
*/
int
gdev_mem_max_height(const gx_device_memory *dev, int width, ulong size)
{ ulong max_height = size /
(bitmap_raster(width * dev->color_info.depth) + sizeof(byte *));
int height = (int)min(max_height, max_int);
/*
* Because of alignment rounding, the just-computed height might
* be too large by a small amount. Adjust it the easy way.
*/
while ( gdev_mem_data_size(dev, width, height) > size )
--height;
return height;
}
/* Open a memory device, allocating the data area if appropriate, */
/* and create the scan line table. */
private void mem_set_line_ptrs(P3(gx_device_memory *, byte **, byte *));
int
mem_open(gx_device *dev)
{ if ( mdev->bitmap_memory != 0 )
{ /* Allocate the data now. */
ulong size = gdev_mem_bitmap_size(mdev);
if ( (uint)size != size )
return_error(gs_error_limitcheck);
mdev->base = gs_alloc_bytes(mdev->bitmap_memory, (uint)size,
"mem_open");
if ( mdev->base == 0 )
return_error(gs_error_VMerror);
mdev->foreign_bits = false;
}
/*
* Macro for adding an offset to a pointer when setting up the
* scan line table. This isn't just pointer arithmetic, because of
* the segmenting considerations discussed in gdevmem.h.
*/
#define huge_ptr_add(base, offset)\
((void *)((byte huge *)(base) + (offset)))
mem_set_line_ptrs(mdev,
huge_ptr_add(mdev->base,
mem_bitmap_bits_size(mdev, mdev->width,
mdev->height)),
mdev->base);
return 0;
}
/* Set up the scan line pointers of a memory device. */
/* Sets line_ptrs, base, raster; uses width, height, color_info.depth. */
private void
mem_set_line_ptrs(gx_device_memory *devm, byte **line_ptrs, byte *base)
{ byte **pptr = devm->line_ptrs = line_ptrs;
byte **pend = pptr + devm->height;
byte *scan_line = devm->base = base;
uint raster = devm->raster = gdev_mem_raster(devm);
while ( pptr < pend )
{ *pptr++ = scan_line;
scan_line = huge_ptr_add(scan_line, raster);
}
}
/* Return the initial transformation matrix */
void
mem_get_initial_matrix(gx_device *dev, gs_matrix *pmat)
{ pmat->xx = mdev->initial_matrix.xx;
pmat->xy = mdev->initial_matrix.xy;
pmat->yx = mdev->initial_matrix.yx;
pmat->yy = mdev->initial_matrix.yy;
pmat->tx = mdev->initial_matrix.tx;
pmat->ty = mdev->initial_matrix.ty;
}
/* Test whether a device is a memory device */
bool
gs_device_is_memory(const gx_device *dev)
{ /* We can't just compare the procs, or even an individual proc, */
/* because we might be tracing. Instead, check the identity of */
/* the device name. */
const gx_device_memory *bdev =
gdev_mem_device_for_bits(dev->color_info.depth);
if ( bdev != 0 && bdev->dname == dev->dname )
return true;
bdev = gdev_mem_word_device_for_bits(dev->color_info.depth);
return (bdev != 0 && bdev->dname == dev->dname);
}
/* Close a memory device, freeing the data area if appropriate. */
int
mem_close(gx_device *dev)
{ if ( mdev->bitmap_memory != 0 )
gs_free_object(mdev->bitmap_memory, mdev->base, "mem_close");
return 0;
}
/* Copy a scan line to a client. */
#undef chunk
#define chunk byte
int
mem_get_bits(gx_device *dev, int y, byte *str, byte **actual_data)
{ byte *src;
if ( y < 0 || y >= dev->height )
return_error(gs_error_rangecheck);
src = scan_line_base(mdev, y);
if ( actual_data == 0 )
memcpy(str, src, gx_device_raster(dev, 0));
else
*actual_data = src;
return 0;
}
#if !arch_is_big_endian
/* Swap byte order in a rectangular subset of a bitmap. */
/* If store = true, assume the rectangle will be overwritten, */
/* so don't swap any bytes where it doesn't matter. */
/* The caller has already done a fit_fill or fit_copy. */
void
mem_swap_byte_rect(byte *base, uint raster, int x, int w, int h, bool store)
{ int xbit = x & 31;
if ( store )
{ if ( xbit + w > 64 )
{ /* Operation spans multiple words. */
/* Just swap the words at the left and right edges. */
if ( xbit != 0 )
mem_swap_byte_rect(base, raster, x, 1, h, false);
x += w - 1;
xbit = x & 31;
if ( xbit == 31 )
return;
w = 1;
}
}
/* Swap the entire rectangle (or what's left of it). */
{ byte *row = base + ((x >> 5) << 2);
int nw = (xbit + w + 31) >> 5;
int ny;
for ( ny = h; ny > 0; row += raster, --ny )
{ int nx = nw;
bits32 *pw = (bits32 *)row;
do
{ bits32 w = *pw;
*pw++ = (w >> 24) + ((w >> 8) & 0xff00) +
((w & 0xff00) << 8) + (w << 24);
}
while ( --nx);
}
}
}
/* Copy a word-oriented scan line to the client, swapping bytes as needed. */
int
mem_word_get_bits(gx_device *dev, int y, byte *str, byte **actual_data)
{ byte *src;
uint raster = gx_device_raster(dev, 0); /* only doing 1 scan line */
if ( y < 0 || y >= dev->height )
return_error(gs_error_rangecheck);
src = scan_line_base(mdev, y);
/* We use raster << 3 rather than dev->width so that */
/* the right thing will happen if depth > 1. */
mem_swap_byte_rect(src, raster, 0, raster << 3, 1, false);
memcpy(str, src, raster);
if ( actual_data != 0 )
*actual_data = str;
mem_swap_byte_rect(src, raster, 0, raster << 3, 1, false);
return 0;
}
#endif /* !arch_is_big_endian */
/* Map a r-g-b color to a color index for a mapped color memory device */
/* (2, 4, or 8 bits per pixel.) */
/* This requires searching the palette. */
gx_color_index
mem_mapped_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
gx_color_value b)
{ byte br = gx_color_value_to_byte(r);
byte bg = gx_color_value_to_byte(g);
byte bb = gx_color_value_to_byte(b);
register const byte *pptr = mdev->palette.data;
int cnt = mdev->palette.size;
const byte *which = 0; /* initialized only to pacify gcc */
int best = 256*3;
while ( (cnt -= 3) >= 0 )
{ register int diff = *pptr - br;
if ( diff < 0 ) diff = -diff;
if ( diff < best ) /* quick rejection */
{ int dg = pptr[1] - bg;
if ( dg < 0 ) dg = -dg;
if ( (diff += dg) < best ) /* quick rejection */
{ int db = pptr[2] - bb;
if ( db < 0 ) db = -db;
if ( (diff += db) < best )
which = pptr, best = diff;
}
}
pptr += 3;
}
return (gx_color_index)((which - mdev->palette.data) / 3);
}
/* Map a color index to a r-g-b color for a mapped color memory device. */
int
mem_mapped_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{ const byte *pptr = mdev->palette.data + (int)color * 3;
prgb[0] = gx_color_value_from_byte(pptr[0]);
prgb[1] = gx_color_value_from_byte(pptr[1]);
prgb[2] = gx_color_value_from_byte(pptr[2]);
return 0;
}